Low serum levels of Vitamin D in MS patients in Puerto Rico

Maria T. Miranda\(^1\), Nicolás Pérez-Maldonado\(^2\), Ángel Chinea\(^3\), Lina Rodriguez\(^3\), Christine Silva\(^2\), Ivonne Vicente\(^3\), James Bryan\(^3\), Erick Suárez\(^4\), Nawal M. Boukli\(^5\)

\(^1\) Inter American University of P R, \(^2\) Bayamón MS Center, PR, \(^3\) San Juan MS Center, PR, \(^4\) University of Puerto Rico, MSC, \(^5\) Biomedical Proteomics Facility, School of Medicine, UCC, Bayamón, PR.

Introduction

Multiple Sclerosis (MS) is a complex disease where genetic and environmental factors are implicated. In Puerto Rico, the prevalence of MS is 52/100,000 inhabitants, according to the MS Epidemiological Study, with ratio female to male of 4:1. Insufficient dietary intake, enzymatic defects, reduced exposure to UV radiation, polymorphisms of the vitamin D receptor genes, and differences in the pigmentation for the skin might contribute to the vitamin D deficiency, observed in autoimmune diseases. Epidemiological data relates low vitamin D levels in rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease hypertension, type 1 diabetes, and lymphomas, prostate, colon, and breast cancers. It is proposed that effect of latitude on MS could be mediated by the extent of exposure to UV radiation and Puerto Rican MS patients, with a geographical location of 18°15’N and 66°30’W, should not show a hypovitaminosis D. Studies in mice have demonstrated a vitamin D regulation of the T cell development and function. Vitamin D hormone regulates T helper cell, regulatory T cells, and dendritic cell function (associated with autoimmunity); stimulates the TGFβ-1 and L-4 production, suppressing inflammatory T cell activity. Administration of the active metabolite 1,25-(OH)(2)D in mice and rats with EAE prevented and reduced the disease activity. 1,25-(OH)(2)D alters dendritic cell and T cell function and regulates macrophages activity in the EAE. 1,25-(OH)(2)D is thought to operate on central nervous system constituent cells as well. It has been shown that vitamin 1,25(OH)\(_2\)D\(_3\) levels are reduced in patients with RRMS, and it is more pronounced during exacerbations. In Caucasian MS patients the risk of MS decreased with increasing vitamin D serum levels, which could be useful as a predictor. There is no published information regarding vitamin D insufficiency/deficiency in MS patients in Puerto Rico.

Objective

To determine Vitamin D3 serum levels in Puerto Rican MS patients and correlate them to MS clinical manifestations.

Results

MS Treatment and Vitamin D Levels

![Figure 1](image1.png)

Distribution by Treatment

![Figure 2](image2.png)

General Outcomes

![Figure 3](image3.png)

Fatigue

![Figure 4](image4.png)

Pain

![Figure 5](image5.png)

Sensory Symptoms

![Figure 6](image6.png)

Cognitive

![Figure 7](image7.png)

144 MS patients were evaluated: demographic data was obtained, MS type, treatment, perception of sensory, pain, fatigue, cognition, and EDSS scores. Vitamin D3 serum levels were measured and categorized in 3 groups: deficient (less than 20 ng/ml), insufficient (20 to 29 ng/ml) and normal (30 ng/ml or more). These values were correlated to EDSS score. Questionnaire of perception of symptoms: sensory (paresthesia), pain (musculoskeletal and neurogenic), fatigue, and cognition were administered after vitamin D3 replacement. Statistical analysis was performed to correlate findings to 25 OH vitamin D serum levels.

Methods

- **Objective**: To determine Vitamin D3 serum levels in Puerto Rican MS patients and correlate them to MS clinical manifestations.

- **Conclusion and Future Studies**: We observed that the study group had a mean age of 42 years, had RRMS, more than 50% had EDSS scores of 2.5 or less. We were able to demonstrate that the majority of them were vitamin D deficient or insufficient (85%). These patients reported an improvement of MS symptoms after vitamin D3 supplementation. We continue analyzing vitamin D3 levels after treatment and increasing the study population to include other MS types and evaluate changes in the EDSS and cognition as a function of vitamin D normal levels. We are also exploring the genetic profile of patients looking for HLA alleles expression and polymorphisms associated with the vitamin D receptor genes, regulatory cytokines patterns and peripheral blood mononuclear cells protein profile using the Proteomics technology.